If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Free Content Conceptual models of early diagenetic processes: The muddy seafloor as an unsteady, batch reactor

 Download
(PDF 4,782.2kb)
 
Download Article:

Abstract:

Conceptual models of early diagenetic processes in sedimentary deposits guide interpretation and investigation of compositional patterns, elemental fluxes, and biogeochemical interactions. The ideas that sediments are open to exchange, are laterally homogeneous, and often accrete steadily upward underlie most diagenetic theory. Net accumulation rate of a deposit is thus a master variable controlling reactions, net fluxes, and sediment properties. These basic ideas and corresponding models have proved extraordinarily robust and useful. Large regions of the seafloor, however, can deviate significantly from some of the common assumptions of traditional diagenetic models, particularly along continent-ocean boundaries, where most sedimentary debris is processed. A spectrum of diagenetic facies representing a wide range of boundary conditions and internal transport-reaction regimes is typically present. Mobile muds are one of the major endmember diagenetic facies found in energetic, high sedimentation environments such as estuaries and deltas. These deposits often behave as episodically-mixed, fluidized batch reactors dominated by microbial biomass rather than, for example, classic advective plug flow reactors or geometrically complex, bioturbated bodies. Redox reaction patterns in mobile muds are unsteady. Suboxic conditions often dominate temporally, reflecting a balance between frequency of seafloor disturbance and the relative abundance and reactivity of recently entrained oxidants and reductants. Sedimentary dynamics, rather than net sedimentation, control the magnitude and nature of elemental fluxes and biogeochemical properties of mobile muds and the lateral exchange of material between diagenetic regimes. The understanding of elemental cycling in continental margins and their evolution as biogeochemical systems require consideration of the different dominant modes and the relative importance of diagenetic processing within and between individual facies.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/0022240042880837

Publication date: November 1, 2004

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more