Skip to main content

Free Content Form, performance and trade-offs in swimming and stability of armed larvae

Download Article:
 Download
(PDF)
 

Abstract:

Diverse larval forms swim and feed with ciliary bands on arms or analogous structures. Armed morphologies are varied: numbers, lengths, and orientations of arms differ among species, change through development, and can be plastic in response to physiological or environmental conditions. A hydromechanical model of idealized equal-armed larvae was used to examine functional consequences of these varied arm arrangements for larval swimming performance. With effects of overall size, ciliary tip speed, and viscosity factored out, the model suggested trade-offs between morphological traits conferring high swimming speed and weight-carrying ability in still water (generally few arms and low arm elevations), and morphologies conferring high stability to external disturbances such as shear flows (generally many arms and high arm elevations). In vertical shear, larvae that were passively stabilized by a center of buoyancy anterior to the center of gravity tilted toward and consequently swam into downwelling flows. Thus, paradoxically, upward swimming by passively stable swimmers in vertical shear resulted in enhanced downward transport. This shear-dependent vertical transport could affect diverse passively stable swimmers, not just armed larvae. Published descriptions of larvae and metamorphosis of 13 ophiuroids suggest that most ophioplutei fall into two groups: those approximating modeled forms with two arms at low elevations, predicted to enhance speed and weight capacity, and those approximating modeled forms with more numerous arms of equal length at high elevations, predicted to enhance stability in shear.

Document Type: Research Article

DOI: https://doi.org/10.1357/002224003771815990

Publication date: 2003-09-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more