Skip to main content

Free Content Diffusion in a lattice-automaton model of bioturbation by small deposit feeders

Download Article:
 Download
(PDF)
 

Abstract:

The mixing of 210Pb and tagged particles is examined in a lattice-automaton model for bioturbation containing small deposit feeders. The values of the biodiffusion coefficient, DB, calculated using typical biological parameter values, i.e., size, abundance, feeding and locomotion rates, are similar to those expected from marine sediments of a given sedimentation rate. Most biological parameters appear to exert primarily linear effects on DB values, while most nonlinearities seem to be model artifacts or failures of the assumptions in the basic DB model. The model highlights the importance of ingestion-egestion, over simple particle displacement, as an agent of bioturbation. The tagged particles are used to calculate root-mean-squared displacement plots, which are linear over long time spans, indicating diffusive behavior. However, initial trends on such plots are not usually linear, indicating that the calculated DB is time dependent for surprisingly long periods after the beginning of such experiments. The latter constitutes a warning to the interpretation of short-term tracer experiments where tagged-particles are salted onto the sediment-water interface and mixing is dominated by small deposit feeders.

Document Type: Research Article

DOI: https://doi.org/10.1357/002224001762674926

Publication date: 2001-09-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more