Skip to main content

Free Content Interannual variability in the mesoscale distribution of the depth of the upper boundary of the oxygen minimum layer off northern Chile (18–24S): Implications for the pelagic system and biogeochemical cycling

Download Article:
 Download
(PDF)
 

Abstract:

The low oxygen concentration (<2 ml L-1) at relatively shallow depths (<100 m) in the coastal upwelling zone and in the adjacent oceanic area is a distinct feature of the eastern boundary Humboldt Current System (HCS) off Peru and northern Chile; it affects the distribution of pelagic organisms and is associated with an important denitrification regime in the water column. Nevertheless, little information is available about the spatial and temporal variability in the distribution of the Oxygen Minimum Layer (OML) present in the HCS and the impact of its variability upon the pelagic system and biogeochemical cycles in the region. The present study reviews the oceanographic data obtained for the area off northern Chile (ca. 18 to 24S, out to 370 km), between 1980 and 1997, with the aim of characterizing the depth distribution of the upper boundary of the OML (1 ml L-1 iso-oxyline, representing also the oxycline) and investigating the association of its interannual variability with changes in coastal sea level and in the equatorial and local thermoclines. The depth of the upper boundary of the OML undergoes pronounced deepening during the occurrence of warm ENSO (El Niño Southern Oscillation) events over the whole area of study, and this, in turn, determines a condition of higher oxygen concentrations in the top 100 m layer. These changes follow closely the patterns of interannual variability in coastal sea level and depth of the thermocline in the area of study during the 1980-1997 period. Most of this variability can be accounted for, as expected from previous studies, by remote forcing originating in the equatorial zone of the Pacific Ocean, as evidenced from the significant correlation between the above local parameters and the interannual variability in the depth of the equatorial thermocline. The 1982-83 and 1997-98 El Niño events seemed to have been the most important ones in terms of their effects upon sea level and depth of the thermocline and oxycline off northern Chile. The potential impacts of the interannual changes in the depth of the upper boundary of the OML upon the pelagic system and biogeochemical cycling in the region are discussed.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/002224099321514097

Publication date: November 1, 1999

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
jmr/jmr/1999/00000057/00000006/art00004
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more