Skip to main content

Free Content Tidal mixing and cross-frontal particle exchange over a finite amplitude asymmetric bank: A model study with application to Georges Bank

Download Article:


Tidal mixing, internal wave bores, and cross-bank particle transport over a finite amplitude asymmetric bank are examined using a two-dimensional primitive equation ocean model with Mellor and Yamada (level 2.5) turbulent closure. Driven by the surface M2 tide, the model results show that tidal mixing exhibits temporal and spatial asymmetries on southern and northern flanks of the bank. It is strongest near the bottom around maximum on-bank tidal flow as a result of gravitational instability when denser water is advected upslope over lighter water. A sharp thermal depression occurs on the steep northern flank, which produces large current shear and strong tidal mixing throughout the upper 50 m of the water column. Dissipation also exhibits a strong tidal variation, with the largest values (of order 10-5 W/kg) occurring near-bottom around maximum on- and off-bank tidal flow. Dissipation generally decreases upward, with a distinct phase lag in the vertical. Fluid particles are advected upslope near the bottom in the upper slope region (depth <150 m) on both flanks, with some particles moving across the tidal mixing fronts near the bottom. The near-bottom residual Lagrangian current is opposite in direction to the residual Eulerian current on the northern flank due to strong nonlinearity over the steep bottom slope. The mean upslope advection of fluid particles near the bottom on both flanks is consistent with model passive tracer experiments, suggesting that strong tidal forcing of a stratified fluid over the bank can provide one physical mechanism responsible for high concentrations of nutrients and hence phytoplankton at the fronts on Georges Bank. The model predictions of eddy viscosity and turbulent dissipation rates are in good agreement with estimates based on recent current and microstructure measurements made on Georges Bank.

Document Type: Research Article


Publication date: November 1, 1998

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics