Skip to main content

Free Content Assessing organic matter mineralization, degradability and mixing rate in an ocean margin sediment (Northeast Atlantic) by diagenetic modeling

Download Article:
 Download
(PDF)
 
We test whether organic matter degradability, mixing activity, and total sediment mineralization can be estimated by inversion of a coupled nonlinear numerical steady-state diagenetic model. We use a single data set comprising oxygen, nitrate, ammonium and organic carbon versus depth profiles from a slope station in the Goban Spur area (1034 m, Northeast Atlantic).

Based on an extensive sensitivity analysis, it appears that (1) when using all data, the total mineralization rates can be determined with reasonable precision; bioturbation and degradability are less well constrained and (2) total mineralization rates can be determined based on nitrate and oxygen profiles only; estimates of organic matter mixing rates and degradability are refined when including the solid phase organic carbon profile.

The bulk mixing rates obtained for organic carbon are one order of magnitude higher than mixing rates previously estimated from 210Pb profiles, lending validity to the hypothesis that organic particles are mixed faster than inert particles. The degradability of the organic carbon prior to its incorporation in the sediment is in the order of 10–30 yr-1, indicating that mineralization in this slope station of the Goban Spur area is fueled mainly by freshly deposited organic matter.

42 References.

No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 1998-03-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more