Free Content Tidal resuspension and deposition of particulate matter in the Oyster Grounds, North Sea

 Download
(PDF)
 
Download Article:

Abstract:

Moored current meters, fluorom eters and transmissometers were used in combination with sediment traps (aspect ratio >4) and shipborne sampling to determine fluxes of deposition and resuspension of total suspended matter (TSM) under tidal action in the 45 m deep Oyster Grounds, North Sea. Here, we present data from the mixed layer below the major thermocline at about 20 m above the bottom (mab) as obtained during a 14-day period of calm weather in July 1994. Around neap tide near-bottom current velocities remained smaller than 0.15 m s-1 and TSM was dominated by particles advected from a relatively turbid area to the southeast of the study site. At the onset of spring tide, current speeds increased with maximum values greater than 0.20 m s-1 and seabed friction velocities exceeding the threshold value for resuspension. Particles resuspended were strongly enriched with organic carbon compared to the bulk sediment, suggesting that not the bed proper but a fine-grained fluff fraction was eroded. This resuspended fluff was by far the dominant source for the mass fluxes in the sediment trap (at 3.2 mab), which showed a distinct tidal cycle with highest fluxes directly after low water slack tide and lowest fluxes during maximum ebb current. This pattern was caused by variations in apparent settling velocity of TSM, presumably due to floc formation during periods in the tidal cycle when current speeds were low and relatively high concentrations of both chlorophyll-a and TSM were found. From a simple model on advection, deposition and resuspension of TSM, we calculated a net accumulation on the sediment of 75 g m-2 during the 14-day study period, which is the difference between gross fluxes of deposition and resuspension. Upon deposition, the average retention time of particles until their next resuspension is calculated at 1-2 weeks, which may be sufficient for substantial decomposition of organic matter associated with TSM. This implies that, upon resuspension, particles transported further along the shelf are relatively poor in organic carbon. It is concluded that the Oyster Grounds serve as a mid-shelf temporary depocenter and that mineralization in this and similar areas may play a crucial role in the carbon budget of the North Sea.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/002224098321836181

Publication date: January 1, 1998

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more