If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Free Content Influences of river discharge on biological production in the inner shelf: A coupled biological and physical model of the Louisiana-Texas Shelf

 Download
(PDF 6,321.4kb)
 
Download Article:

Abstract:

A coupled biological and physical model was applied to study the influence of river discharge on biological variability on the Louisiana-Texas (LATEX) continental shelf. The physical part included a primitive-equation turbulent closure model, and the biological part was a simple phytoplankton (P), zooplankton (Z), and nutrient (N) model. The model was forced by freshwater discharge from the river and ran prognostically under initial conditions of springtime water stratification and a steady-state solution of the P-Z-N model with no horizontal dependence. A nutrient source was included at the mouth of the river. The model predicted a well-defined density frontal zone on the inner shelf. The biological field showed a region of high phytoplankton biomass in the whole water column near the coast and a moderately high biomass patch in the upper 10 m at the outer edge of the frontal zone. A high concentration dome of nutrients was found near the bottom within the frontal zone. New production of nutrients was high throughout the whole water column near the coast and in the upper 10 m at the outer edge of the density front, but lower in the frontal zone. The model results were in reasonable agreement with observational data taken from a May 1993 interdisciplinary survey on the LATEX shelf.

Cross-shelf distribution of biological production varied significantly with direction of wind stress but not with the diurnal tide. The model results suggested that the bottom-rich nutrient distribution within the frontal zone was caused by the interaction of physical and biological processes. Physical processes caused the formation of an area of high nutrient concentration in the weak current region within the frontal zone. Subsequent biological processes limited the increase of nutrients in the upper euphotic zone and hence led to the bottom-rich nutrient pattern.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/0022240973224391

Publication date: March 1, 1997

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more