Skip to main content

Free Content The effects of differential vertical diffusion of T and S in a box model of thermohaline circulation

Download Article:
(PDF 2,411.8 kb)


A diffusive box model, consistent with geostrophy, is proposed as an alternative to more usual advective box models of the ocean thermohaline circulation. When vertical diffusion coefficients for T and S are taken as identically equal (the normal assumption in all numerical ocean models to date), the diffusive box model exhibits both steady-state modes and time-dependent behaviors which are essentially indistinguishable from those of an advective model, under both fixed flux and mixed (T restoring) boundary conditions. The thermohaline “circulation” of the diffusive box model, however, is a combination of a convective branch and a vertical diffusive branch, involving zero volume flux. Modifications in behavior of the diffusive box model are investigated for a plausible range of values for the ratio d ≡ Ks/KT of the vertical turbulent diffusivities of S and T. When surface fluxes of heat and freshwater are constant, the model with d ≠ 1 exhibits additional steady-state modes in which convection is absent from the system, as well as a periodic oscillatory mode. Compared to results with d ≡ 1 under mixed surface boundary conditions, the model with d ≠ 1 exhibits extended ranges of multiple equilibria, a different mode transition near present-day values of freshwater forcing magnitude, and the possibility of quasi-periodic oscillatory states. The sensitivity of the present box model, coupled with that previously observed in a primitive equation model (Gargett and Holloway, 1992), raises serious questions about the ability of numerical models to predict the evolution of the ocean thermohaline circulation under changing atmospheric forcing, even if other problems with such prediction were resolved.

Document Type: Research Article


Publication date: September 1, 1996

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more