Free Content Distinct year-to-year particle flux variations off Cape Blanc during 1988–1991: Relation to δ18O-deduced sea-surface temperatures and trade winds

 Download
(PDF 1,700.3 kb)
 
Download Article:

Abstract:

Particle fluxes measured from 1988 to 1991 adjacent to a coastal upwelling site off Cape Blanc showed significant interannual variability of fluxes and sea-surface temperatures (SST) deduced from stable oxygen isotope analysis of the planktonic foraminifera Globigerinoides ruber and, partly, of the pteropod Limacina inflata. For the duration of the study period, a decrease in the seasonality of SST's was observed, as well as a significant decrease in the average annual SST from 24.4° to 20.8°C. This cooling trend was mainly the effect of a drastic decrease in the summer to fall SST (from 27.2° to 21.8°C). In comparison, the winter-spring SST decreased only slightly from 20.3° in 1988 to 19.8°C in 1991. Concomitantly, we measured decreasing annual total, carbonate, biogenic opal and lithogenic fluxes and, in contrast, increasing marine organic carbon fluxes. During 1991, when cold SST's prevailed and the trade winds were rather high throughout, annual biogenic and lithogenic fluxes (except organic carbon) were lower by approximately a factor of two compared to the other years. Colder SST's, generally corresponding to stronger trade winds and upwelling intensity, did not result in increased biogenic opal and lithogenic matter sedimentation; but higher marine organic carbon fluxes were recorded. Decreasing summer-fall SST from 1988 to 1991 coincided with decreased carbonate sedimentation maxima which generally occurred during the warm summer season. In the summer of 1989, when SST's were the highest of the four-year sampling period and upwelling was less intense due to weak spring-summer trades, a large sedimentation pulse of pteropod shells was observed. Our data set does not yet provide conclusive evidence that the observed year-to-year flux and SST variations represent larger-scale, periodically occurring climatic variations in the eastern Atlantic but it offers insight into the prevailing large variability in biochemical cycles and processes in the eastern Atlantic.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/0022240963213484

Publication date: January 1, 1996

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more