Skip to main content

Free Content Vorticity balance of boundary currents

Download Article:
 Download
(PDF 1011.04296875 kb)
 

Abstract:

Friction at the seafloor acts as a source of potential vorticity (PV) for individual isopycnic layers of a boundary current. The rate of PV transport (flux times layer thickness) equals, to a good approximation, the divergence of alongstream shear stress in the bottom boundary layer at the seafloor, which in turn equals the alongstream gradient of Montgomery potential. Mean PV transport is continuous along isopycnals between the bottom boundary layer and a boundary current in statistically steady state. Within the boundary current, Reynolds flux of vorticity transports PV. The divergence of this transport balances planetary vorticity advection and other terms in the vorticity equation. PV transport is equivalent to horizontal shear force, and its continuity from the seafloor to the interior of the boundary current implies that the total shear force exerted by the seafloor over the broad footprint of an isopycnic layer acts as much increased shear over the shallow depth of the same layer offshore.

A drag law of the bottom boundary layer connects shear stress at the seafloor to velocity outside the boundary layer, a similarity argument yields the functional form of the shear stress gradient-friction velocity relationship, and hence the boundary condition on PV transport from the seafloor. This is neither free-slip nor no-slip, but closer to the latter.

Document Type: Research Article

DOI: https://doi.org/10.1357/0022240953213269

Publication date: 1995-03-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more