Skip to main content

Free Content A decadal oscillation due to the coupling between an ocean circulation model and a thermodynamic sea-ice model

Download Article:
 Download
(PDF 1,632.3 kb)
 

Abstract:

A 3-dimensional, planetary-geostrophic, ocean general circulation model is coupled to a thermodynamic sea-ice model. The thermal coupling takes account of the insulating effect of the ice. A simple approach is taken in the case of the freshwater flux by allowing this to pass through the ice, except that some is used for snow accumulation. It is then modified by salinity rejection/dilution due to freezing/melting. The model has idealized box geometry extending 60° in both latitude and longitude, with a horizontal resolution of 2° and 14 vertical levels. Annual mean surface forcings are used. The coupled system is first spun up using restoring conditions on both surface temperature and surface salinity to reach a steady state which includes ice in the high latitudes. A switch of the surface forcing to mixed boundary conditions (restoring on temperature and flux on salinity) leads to an oscillation of period 17 years in the magnitude of the thermohaline circulation and the ice extent. The oscillation is due to a feedback between ice cover and ocean temperature. Since ice forms only in regions where the ocean loses heat to the atmosphere, the thermal insulation of an increased ice cover makes the ocean warmer. The thermohaline circulation plays a role in transporting this heat polewards, which in turn melts the ice. The heat loss over open water at high latitudes then leads to ice formation and the process repeats itself. Salinity rejection/dilution associated with ice formation/melting is shown to be of secondary importance in this oscillation. Rather, changes in surface salinity are dominated by changes in deep convection and the associated vertical mixing, which are themselves associated with the reduction in surface heat loss due to the insulating effect of the ice. As a consequence the model exhibits the negative correlation between surface salinity and ice extent that is observed in the high latitude North Atlantic.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/0022240953213304

Publication date: January 1, 1995

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more