Skip to main content

Free Content Particle bioturbation in Massachusetts Bay: Preliminary results using a new deliberate tracer technique

Download Article:
(PDF 1,735.9 kb)


To better understand temporal and particle size-dependent bioturbation processes, we conducted a study of sediment mixing in Massachusetts Bay using a newly developed deliberate tracer technique. Sediments from a 32-m, fine-grained site were collected and the 38–62 (“silt”) and 63–125 (“sand”) μm fractions isolated. These particle-size fractions were labeled with two different noble metals (Au: silt & Ag: sand) using a thermal diffusion technique. Mixtures of the tracers were spread onto the seafloor in April and July 1992 by divers and were tube-cored (3 replicates) ˜ 80 d later in each case. Vertical profiles of the tracers were measured at μg/g (Ag) and ng/g (Au) levels by instrumental neutron activation analysis. During the spring experiment, Au (silt) was mixed to depths > 15 cm and displayed multiple subsurface maxima, whereas Ag (sand) was confined to the upper 5 cm of the bed and showed a near monotonic decrease in concentration with depth. In the fall experiment, the tracers displayed more congruent down-core profiles consisting of near-surface maxima and several subsurface peaks. Two nonlocal bioturbation modes are suggested by the tracer data: reverse conveyor-belt transport and head-down deposit feeding or excavation. A particle caching strategy by an unidentified macrofaunal species is postulated to explain the subsurface peaks, but remains conjectural without better species-level natural history information regarding solid-phase bioturbation.

Document Type: Research Article


Publication date: November 1, 1994

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more