If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Free Content Internal tidal bores in the nearshore: Warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae

 Download
(PDF 2,831.8kb)
 
Download Article:

Abstract:

Nearshore temperature fluctuations are associated with energetic cross-shore two-way flows that influence the onshore transport of neustonic larvae. Water temperature near the surface and bottom at two nearshore stations off southern California (6 and 15 m water depth, respectively) can drop sharply and subsequently rise. Two or more consecutive drops and rises can occur at diurnal or semidiurnal periodicities. The temperature increases may be accompanied by energetic seaward bottom currents together with sharp-edged warm-water fronts. (Warm-water fronts are defined here as linear seasurface features dividing parcels of water of different temperature.) Shoreward-moving surface fronts divided bodies of water of different surface temperature, where the coldest water body was inshore. Fronts disappeared at (or close to) the surf zone. The sharp drops in water temperature are interpreted as the onshore advection of subsurface water by large internal tidal bores, and it is concluded that the sudden increases in temperature and cross-shore advection are epiphenomena of internal tidal bores.

Internal tidal bores have been invoked previously to explain the onshore transport of water-column larvae. This study tests the hypothesis that shoreward surface flow, an epiphenomenon of internal tidal bores, transports neustonic larvae in warm-water fronts. Five warm-water fronts were sampled in shallow water (about 6 m) for temperature and fish and crab larvae in June-July 1992. These larvae were more abundant in fronts than in parcels of water preceding or following the front. Peaks in larval abundance were accompanied by a sharp rise in temperature, in itself evidence for onshore transport of surface water. It is concluded that both warm-water fronts and internal tidal bores play a key role in the exchange across the shelf of material and water properties, and that internal tidal-bore phenomena explain well the transport of both water-column and neustonic larvae in different habitats.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/0022240943077046

Publication date: May 1, 1994

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more