Skip to main content

Free Content Enhanced deposition to pits: A local food source for benthos

Download Article:
 Download
(PDF 1624.28515625 kb)
 

Abstract:

Particle deposition experiments using mimics of biogenous negative relief (“pits”) and low-excess-density particles in a small annular flume indicate a significantly enhanced deposition rate (number of particles per time) compared to smooth, flat patches of the same diameter. This study included flow visualizations as well as observations of particle residence times, particle concentrations in the pits, and particle fluxes to the pits from the main flow. Experimental conditions of particle concentration, shear velocity, and particle settling velocity mimicked the dynamic characteristics (low excess density and large size) of organic-rich flocs and flow conditions in the subtidal and deep sea where biogenous pits are common features. Results suggest that pits provide benthic organisms an important capture mechanism for such flocs. Flow visualizations concur qualitatively with previously reported results for two-dimensional cavity flow, with unique features due to the conical shape of the pits. When the Rouse number (settling velocity/shear velocity) was much less than 1, pit deposition rate increased with increasing pit aspect ratio (AR = depth/diameter; ranging from 0.25 to 2) and always exceeded deposition to a flat patch of comparable diameter. For the single aspect ratio tested (AR = 0.5) under conditions of increasing turbulence, deposition to the pit increased under transitional flow, but then decreased to near zero when conditions reached fully rough flow. Relative enhancement of deposition to this pit decreased with increased ambient bed roughness since gravel beds also effectively collect particles. Particle concentration inside pits decreased weakly with pit aspect ratio but greatly increased with increasing roughness Reynolds number. Particle residence time increased somewhat with pit aspect ratio but decreased significantly with increasing roughness Reynolds number. Particle flux into pits from the main flow increased with both increasing aspect ratio and increasing roughness Reynolds number. Enhancement of food supply to pit inhabitants thus depends on the flow regime.

Document Type: Research Article

DOI: https://doi.org/10.1357/0022240933223819

Publication date: 1993-02-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more