Skip to main content

Free Content Numerical modeling of larval settlement in turbulent bottom boundary layers

Download Article:
(PDF 2,508.7 kb)


A time-dependent model of a tidal or wave bottom boundary layer has been developed to quantitatively evaluate the relative influences of vertical advection, turbulent mixing and shear, and near-bed behavior on settlement of planktonic larvae of benthic animals. The settlement behavior of larvae is modeled with a simple flux condition at the bed. This allows full time dependence to be included when determining settlement rates. For tidal oscillations, the model predicts that most settlement will occur at and near periods of slack water, whereas comparatively little settlement will occur during periods of stronger flow. In contrast, there should be little temporal variability in settlement rates associated with short-period wind waves. If larvae exhibit a relatively weak propensity to settle, then the settlement flux is small compared to the advective/turbulent flux of larvae supplied from higher in the water column to regions near the bed. In this case, a description of probability of settlement and a quasi-steady state suspension model fully describe the system. In contrast, when larvae exhibit a high settlement propensity, then the settlement flux is potentially larger than the advective/turbulent flux and the system is controlled by the hydrodynamic supply of larvae to the near-bed region. In this case, net settlement is governed primarily by larval fall velocity (a composite of gravitational sinking plus swimming) and turbulent shear stress. The ecological systems which are controlled by animal behavior or by physical processes may thus be identified by estimates of relatively simple parameters describing these fluxes.

Document Type: Research Article


Publication date: November 1, 1992

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more