If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Free Content The rise of bubbles in a glass tube and the spectrum of bubbles produced by a splash

 Download
(PDF 1,143.3kb)
 
Download Article:

Abstract:

Bubbles produced by a volume of 500 cc of water falling through a distance of 1.07 m into a water-filled basin were allowed to rise into an adjacent water-filled tube whose top was sealed at a level of 1.7 m above the level of water in the basin. The rise of these bubbles was recorded on video at a height of 1.5 m above the level of the splash: larger bubbles were recorded first. A model has been devised to describe the rise of such bubbles. The rise speed of the bubbles at the level of the video camera decreased with time after a splash, becoming nearly constant after a few minutes. The model used this long term rise speed to estimate the nitrogen saturation in the water. Oxygen saturation is measured by an electrode. Given the saturation it was then possible to use the model to calculate the initial spectrum of bubbles rising up the tube from the splash (i.e. the spectrum of such bubbles a second or two after the splash, when bubble fractionation or coalescence has ceased). The smallest bubble that could be seen depends on the gas saturation, but was typically of initial radius 20 m, corresponding to a radius of 50-70 m at the level of the video. Such spectra were found at different saturations, distances from the splash and salinities. At gas saturations of 105%-120%, a peak appears in the spectrum at a radius of about 20 m. The time of admission of bubbles into the tube after a splash could also be restricted. For unrestricted sampling times, dN/dr varied as r−1.5, when expressed as a power law. The spectrum above the peak value became steeper at later sampling times. At salinities below about 10 ppt, the number of bubbles of calculated initial radius < 600 m is reduced. While no attempt was made to produce a realistic breaking wave, these results are relevant to attempts to define a source function of bubbles at sea, and to comparisons between fresh and salt water experiments.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/002224092784797511

Publication date: November 1, 1992

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more