Skip to main content

Free Content The thermocline as an "internal boundary layer"

Download Article:
(PDF 1443.0791015625 kb)
In this paper, we analyze one-, two- and three-dimensional numerical solutions of a simple, inertia-less ocean circulation model. The solutions, which all approach a steady state, demonstrate that, in the limit of vanishing thermal diffusivity , a front of thickness 1/2, identifiable with the thermocline, spontaneously appears at a location anticipated by simple arguments that treat the front as an "internal boundary layer." The temperature and velocity are generally discontinuous across the front, but the velocity component normal to the front is zero. In the asymptotic limit of vanishing diffusivity, the temperature has no vertical variation within the layer above the front, and the potential vorticity is correspondingly zero. The appearance of a front seems to require that the horizontal advection terms cancel in the temperature equation, i.e., that the horizontal velocity be directed along the isotherms on level surfaces. When the surface boundary conditions are specially chosen to prevent this cancellation, the front does not appear. However, in the more realistic cases in which the flow determines its own surface temperature, the cancellation occurs spontaneously and appears to be generically associated with the front.

18 References.

No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 1990-08-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more