Skip to main content

Free Content Effects of large-scale topography on abyssal circulation

Download Article:
 Download
(PDF 3,988.7 kb)
 

Abstract:

Two models are employed to study the effect of topographically induced planetary islands (i.e. closed contours of potential vorticity) on the abyssal circulation of an ocean basin. The first is a steady state calculation using a 1½ layer model of the abyssal ocean forced by a uniform upwelling. Planetary geostrophic dynamics yield a characteristic equation in which the inverse potential vorticity serves as a streamfunction for the characteristic velocity field. Aside from warping the classic Stommel-Arons flow in the immediate vicinity of the planetary island, the topography introduces two new elements to the zonal flow west of the topography. The first of these is a system of two zonal jets, flowing in opposite directions and centered on the separatrix contour. The second is an acceleration (or retardation) of the zonal flow (with respect to the classic flat-bottom result) in a broader region of the basin. The strengths of both the double jets and the broader regions of enhanced/retarded zonal flow are found to be determined by forcing in relatively small areas of the basin. The former are excited in the vicinity of saddle points of potential vorticity whereas the latter are excited primarily where the curvature of potential vorticity contours is large.

The second model, a time dependent 2½ layer planetary geostrophic model is then used to investigate the spin-up problem. The model is forced by a uniform upwelling through each of the two interfaces. The density jump at the upper interface (e.g. the thermocline) is chosen to be ten times that at the lower interface, a disparity which leads to a separation in time scale between the fast and the slow waves of the system. Topography, however, induces a strong coupling between these two modes and results in a quick baroclinization of the flow over the topography. This baroclinization occurs well before the arrival of the nondispersive wave front from the eastern boundary and thus differs from the traditional view of spin-up.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/002224090784988782

Publication date: May 1, 1990

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
jmr/jmr/1990/00000048/00000002/art00001
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more