If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Free Content Spectral transform simulations of finite amplitude double-diffusive instabilities in two dimensions

 Download
(PDF 2,156.5kb)
 
Download Article:

Abstract:

Simulations of double-diffusion with a two-dimensional, vertical plane spectral transform model reveal details of finite amplitude behavior in salt finger, interleaving and diffusive instabilities. Within the range of fluid parameters studied (3 < < 10, .1 < r < .5), infinite, fastest-growing fingers are unstable to Holyer's (1984) nonoscillatory instability and are completely disrupted by it. Finite fingers localized on density steps are also disrupted. Initialized density steps are eroded (the gradients reduced). Fluxes and other diagnostic quantities were determined for salt finger fields at statistical stationarity. These fields contain transitory, irregular finger structures. Fluxes decline steeply as Rfp increases. A single point of comparison of buoyancy flux with ocean measurement yielded good agreement. The dependence of flux ratio on the stability parameter is similar to the linear theory prediction for fastest-growing, infinite fingers and does not increase as Rfp approaches 1, in contrast to laboratory measurements. Holyer's (1984) Floquet theory is extended to the case of nonzero, density compensating, horizontal gradients, and, together with the simulation results, encourages the interpretation of the interleaving instability as being sloping salt fingers. A few preliminary simulations of the diffusive regime indicate very complex behavior. A growing oscillatory perturbation can lead to subcritical convective instability. Such motions sharpen initialized density steps. In the presence of a step, unstable motions are supported even when the fluid is linearly stable to both convection and the diffusive mode.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/002224089785076307

Publication date: May 1, 1989

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more