Skip to main content

Free Content Penetrating outflows and the dam-breaking problem

Download Article:
(PDF 810.8017578125 kb)


A new analytical method for computing the speed at which the nose of a rotating intrusion advances along a straight coast is proposed. The nonlinear model includes two active layers; the width of the basin in which the intrusion advances is taken to be finite. Friction is assumed to be small but the motions near the leading edge are not constrained to be quasi-geostrophic.

In contrast to previous models (Stern et al., 1982; Kubokawa and Hanawa, 1984a, b) which rely on the assumption that the current head behaves like a long wave and the flow is hydrostatic, the propagation rate is computed by taking into account the flow forces behind and ahead of the nose without assuming a hydrostatic pressure near the head. Specifically, it is argued that the integrated sum of the momentum flux and pressure forces ahead of the leading edge must balance the flow force behind the head. This balance provides a relationship which enables one to compute the desired advancement rate; it leads to a set of five algebraic equations with five unknowns which can be solved analytically.

It is found that, in an ambient ocean with a finite depth, steady propagation rates are possible only when the intrusion is taking place in an oceanic channel with a (predicted) finite width. The steady advancement rate varies from 0.811 (g′D)1/2 to 0.824 (g′D)1/2 (where g′ is the "reduced gravity" and D is the upstream depth of the intrusion near the wall).

The above results illustrate that the presence of rotation makes the dynamics richer. In contrast to the family of solutions found here, there is only one steadily propagating solution (which conserves both energy and momentum) in the absence of rotation; it corresponds to a propagation rate of √2(g′D)1/2/2. For an infinitely deep and infinitely broad ocean the new results do not yield a steady propagation rate. Possible application of this theory to various oceanic situations is mentioned.

Document Type: Research Article


Publication date: 1987-08-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more