Free Content Nekton falls, low-intensity disturbance and community structure of infaunal benthos in the deep sea

 Download
(PDF 1,688.7kb)
 
Download Article:

Abstract:

A simulation of natural disturbance at the bathyal seafloor evoked rapid response from dominant infaunal species, for the first time providing experimental evidence that similar disturbances structure normal deep-sea communities. Parcels of dead fish (1–40 kg) were placed on the seafloor at a depth of 1310 m in the Santa Catalina Basin and monitored with Alvin and free-vehicle cameras for up to 8 wk. Dense aggregations of fish and ophiuroids were rapidly attracted to the baitfalls; in the process of consuming the bait, these megafaunal scavengers disrupted sediment surface structures and resuspended substantial amounts of sediment. The predominant macrofaunal effect was reduction of infaunal species diversity and community abundance around treatments. The most strongly depressed species was the community dominant Tharyx monilaris, a near-surface-dwelling cirratulid polychaete. Disturbance effects were low in intensity, however, with a large number of background species persisting within the perturbed area. Three macrofaunal species rapidly colonized the areas of disturbance/enrichment near baitfalls; two of these species, the paraonid polychaete Levinsenia oculata and the cirratulid polychaete Chaetozone sp. A, were dominant members of the surrounding community, while the third respondent, the cumacean (?)Cumella sp. A, was rare in background sediments. L. oculata and (?)Cumella apparently responded as post-larvae, suggesting that "adult" colonization of disturbed habitats may be important in deep-sea environments. The opportunistic response of two common species indicates that normal components of the Santa Catalina Basin fauna can rapidly exploit disequilibrium conditions, such as those resulting from a variety of low-intensity disturbance sources (e.g., conveyor-belt species, megafaunal "croppers", skates, flatfish, carcasses of megafauna, kelp falls) commonly observed at the basin floor. Low-intensity disturbance may thus contribute materially to the structure of this, and other, deep-sea communities.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/002224086788403015

Publication date: August 1, 1986

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more