Skip to main content

Free Content The internal tide on Georges Bank

Download Article:
(PDF 762.6279296875 kb)


Data from a section of eleven current meters oriented across-isobaths at three locations on Georges Bank were examined. On the bank, the M2 tidal currents were barotropic and were in close agreement with the Greenberg (1983) numerical model of the Gulf of Maine. On the slope, the M2 tidal current contained 70° phase shifts for 35 m changes in depth. The results from the model were used to separate currents due to the internal and surface tides. It was found that amplitude of the tidal velocities associated with the baroclinic component of the internal tide were as large as for the estimated barotropic tidal velocities. The eddy and mean heat fluxes off the bank were calculated. The depth-averaged heat flux due to the mean currents was statistically zero. The eddy heat flux on the slope was significant and was in a direction consistent with a transport of scalar properties on to the bank. A horizontal diffusion coefficient of 290 m2/s was calculated. The maximum eddy flux occurred immediately below the thermocline on the bank slope at a depth of large temperature inversions. It is suggested that a breaking internal tide plays a large role in determining across-isobath scalar transports.

Document Type: Research Article


Publication date: 1986-02-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more