Skip to main content

Novel Developments in Photonic Sintering of Inkjet Printed Functional Inks

Buy Article:

$20.00 plus tax (Refund Policy)

Inkjet printing of electrical tracks in roll-to-roll applications was hampered for a long time since nano-particle inks required thermal sintering at temperatures greater than 120 °C for several minutes. Among a large number of potential R2R compatible techniques, photonic sintering of inkjet-printed metal-based inks was shown to enable very fast sintering times and providing high quality of structural integrity and low electrical resistance [1]. While the above investigations were carried out with a low dutylow frequency irradiation source, novel developments allow for pulse shaping on the timescale of several microseconds and, therefore, the combination of drying and sintering pulses into a single piece of equipment.

In this contribution the photonic sintering process was investigated numerically and experimentally for the case of inkjet-printed aqueous copper oxide ink and a Pulse Forge®3200 X2 tool, both implemented onto a NovaCentrix roll-to-roll machine. Our finding support the assumption, that pulse shaping and, therefore, energy tailoring as a function of time, is essential for efficient conversion of wet copper oxide deposits into conductive copper with no impact on the underlying substrate. The paper presents and discusses the resulting electrical resistances of features processed with a conventional hybrid solution using IR-radiation for pre-drying as well as a single step drying and sintering using a single radiation source.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2013-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more