Skip to main content

3D Printing of Self-Glazing Ceramic Materials: An Investigation Inspired by Ancient Egyptian Technology

Buy Article:

$12.00 plus tax (Refund Policy)

The inspiration and background research for this project is based upon Egyptian Faience because there is an interesting and coincidental synergy between the material properties of ancient Egyptian Faience and the material requirement for the successful 3D printing of ceramic powders. Originating in the 5th Millennium BC, Egyptian Faience was not made from clay, but instead composed of quartz and alkali fluxes and is distinct from Italian Faience or Majolica, which is a tin, glazed earthenware. In its original Egyptian context Faience was a versatile material, used in a variety of ways and in a number of different forms, to create objects such as sculpture, vessels, funeral figurines, tiles, boxes and body ornamentation – all with a highly coloured lustred glaze. In contemporary terms Egyptian Paste has visual qualities desirable to many crafts practitioners.

This paper will chart the progress of the project to date and detail the technical development of 3D printed self-glazing ceramics. The potential of the process will be demonstrated by the production of ceramic artworks using the techniques developed during the project.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 January 2013

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more