Skip to main content

Selecting Digital Deposition Methods to Meet 2D and 3D Application Requirements

Buy Article:

$12.00 plus tax (Refund Policy)

The paper outlines methods for effectively selecting digital deposition technologies for 2D printing and 3D deposition when there are dozens of technologies from which to choose. We present a matrix of parameters for comparing and evaluating the costeffectiveness, performance capabilities and characteristics of currently available digital print and deposition technologies against the performance requirements of applications. The paper specifically cites 2D and 3D applications including folding carton production and plastic parts manufacturing requirements. The matrix structure provides researchers and technology developers with a flexible tool for fine-tuning the print and deposition technology selection process. This paper also examines how developers can use the matrix for integrating digital deposition technology into complex manufacturing assembly processes. Due to the space limitations that this publication affords, we provide the matrix in outline form with a few examples. Our research group has compiled a comprehensive matrix.

The digitally controlled deposition methods covered in this presentation include: the various forms of inkjet, inkjet-like methods, Inkjet Liquid Binding Powder (IJLBP), syringe deposit / Robo-casting (RC), aerosol deposit, pump dispensing, Electron Beam Freeform Fabrication (EB3F), Shape Deposition Manufacturing (SDM), and Fused Deposition Modeling (FDM)/Fused Filament Fabrication (FFF). We have focused for this presentation on methods where a digitally controlled process deposits material on a substrate or a particulate build material. In this report we do not cover spread-coating methods using radiation curing, such as laser electro-photography, stereolithography (SLA), selective laser sintering (SLS), Selective Laser Melting (SLM), Electron Beam Melting (EBM), and Solid Ground Curing (SGC). Nor do we cover laminating build methods, such as Laminated Object Manufacturing (LOM). Our group covers these other technologies in an upcoming report. The matrix structures of all these reports will facilitate comparison of print, deposition and build methods against application requirements.

We focus on the characteristics of the deposition methods that address application requirements. These encompass both the way the deposition method performs and what it can deposit. Performance factors include the rate at which it can deposit amounts of specific materials, the accuracy and consistency of deposition placement, deposition resolution, the pH and deposit material device tolerances, material viscosity ranges necessary for deposition, system temperature controls and tolerances, operating, deposition material velocity, grey-scale capabilities, and device performance life. Users would also need capital and operation costs in selecting deposition systems. Operating costs will, however, vary greatly depending upon particular use. We therefore have not included operating costs in the current presentation matrix. Deposited material characteristics include viscosity, surface tension, and method to dry, solidify, polymerize, cure or fix. Performance requirements for deposited films and builds include abrasion and chemical resistance, tensile strength, and market acceptance of output appearance.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 January 2013

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more