Skip to main content

Development of Conductive Carbon Coated Copper Nanoparticle Inkjet Fluid

Buy Article:

$12.00 plus tax (Refund Policy)

An aqueous inkjettable conductive fluid based on carbon coated copper nanoparticles has been developed. The fluid can be handled in atmospheric conditions and processed at low temperature (105 °C) with no thermal annealing. A layer conductivity exceeding 600 S/cm has been demonstrated. The particles were produced in a continuous flow reactor from copper chloride powder by hydrogen reduction at high temperature (950 °C). Results indicate that conductivity is enhanced through the formation of carbon nanotubes by addition of ethene and water to the reaction flow. The type and concentration of dispersing additive and co-solvents had a significant impact on dispersion stability and electrical conductivity of the deposited layer. Applicability of the fluid for direct patterning of coatings for e.g. antistatic purposes was demonstrated by inkjet printing of a conductor electrode pattern.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2011-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more