Skip to main content

Inkjet printing of non-Newtonian fluids

Buy Article:

$20.00 plus tax (Refund Policy)


Jet breakup is strongly affected by fluid rheology. In particular, small amounts of polymer can cause substantially different breakup dynamics compared to a Newtonian jet, influencing in-flight fragmentation and detachment from the nozzle. Significant concentrations may also impede jettability. Furthermore, most commercial and industrial inks are inherently colloidal due to the presence of pigment and other additives. Fluids containing a particulate phase are normally shear-thinning and so may have a different characteristic viscosity within the nozzle compared to the ejected ligament. We have developed numerical simulations using a Lagrangian finite element method that captures the free surface automatically, and admits a variety of viscosity dependences, e.g. on the local shear rate (generalized Newtonian fluid) or on the particle concentration (Krieger-Dougherty type models), in addition to several viscoelastic models for polymeric fluids. This method has been benchmarked against experimental data for Newtonian jets. Appropriate rheological models are discussed, and results are presented alongside comparisons with experimental work.

Document Type: Research Article

Publication date: January 1, 2011

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more