Skip to main content

Pale Defect of Halftone Following Solid Image in Two-Component Magnetic Brush Development System in Electrophotography

Buy Article:

$20.00 plus tax (Refund Policy)


We studied the mechanism of and countermeasures against a pale image defect observed in the halftone area following a solid image in a two-component magnetic brush electrophotographic development system. We manufactured a model apparatus consisting of a pseudo-photoreceptor drum, development sleeve, and stationary magnetic roller. The image was created on an insulated film electrode pasted onto the drum. A parameter experiment confirmed that the image defect was enhanced when the voltage difference applied to the solid area and halftone area was large, ac voltage superposed on the dc development voltage was low, the development gap was large, and the speed ratio (sleeve speed to drum speed) was low. However, the defect was almost entirely independent of the frequency and waveform of the superposed ac voltage. The dynamic behavior of toner particles in the development area was directly observed using a high-speed microscope camera, and the mechanism of this print defect was investigated. The results of this experimental work can be utilized to improve the two-component magnetic brush development electrophotographic system.

Document Type: Research Article

Publication date: January 1, 2011

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more