Skip to main content

Microscopic Color Measurements of Halftone Prints

Buy Article:

$20.00 plus tax (Refund Policy)


Modeling halftone print reproduction is difficult, mainly because of light scattering, causing optical dot gain. Most available models are based on macroscopic color measurements, integrating the reflectance over an area that is large relative the halftone dot size. The reflectance values for the full tone and the unprinted paper are used as input, and these values are assumed to be constant. An experimental imaging system, combining the accuracy of color measurement instruments with a high spatial resolution, allows us to measure the individual halftone dots, as well as the paper between them. Microscopic color measurements reveal that the micro-reflectance of the printed dots and the paper is not constant, but varies with the dot area fraction. By incorporating the varying reflectance of the ink and paper in an expanded Murray-Davies model, the resulting prediction errors are smaller than for the Yule-Nielsen model. However, unlike Yule-Nielsen, the expanded Murray-Davies model preserves the linear additivity of reflectance, thus providing a better physical description of optical dot gain. The microscopic color measurements further show that the color shift of the ink and paper depends on the halftone geometry and the print resolution. In this study, we measure and characterize the varying micro-reflectance of ink and paper with respect to properties of the halftones, using AM and FM prints of various print resolutions.

Document Type: Research Article

Publication date: January 1, 2010

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more