Doctor Process of Toner Layer in Non-Magnetic Single-Component Development System in Electrophotography

$20.00 plus tax (Refund Policy)

Buy Article:


In a non-magnetic single-component development system in electrophotography, formation of a thin and uniform toner layer on the development roller is important for obtaining high image quality. We conducted experimental and numerical investigations to clarify the dynamics of toner particles in this process. Two approaches were adopted for the investigation. One is experimental and the other is numerical simulation using the distinct element method. We manufactured a mock-up apparatus consisting of a supply roller, a development roller, and a doctor blade for forming a thin toner layer on the development roller. The thickness, surface roughness, and charge density of the formed toner layer were measured after the doctoring process. It was clarified that the thickness of the toner layer was increased, but the charge density was decreased, by increasing the applied voltage and rotational speed. These findings were confirmed by direct observation of the toner motion in the doctoring area with a high-speed microscope camera. Numerical calculations performed using an improved distinct element method revealed that the elastic energy applied to the toner particles, which is an index of toner degradation, was increased by increasing the stiffness and pressing force of the doctor blade, but decreased when the curvature of the blade tip was large. The present experimental and numerical results can be used to improve non-magnetic single-component development system in electrophotography.

Document Type: Research Article

Publication date: January 1, 2010

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more