Skip to main content

Inkjet Printing of Functional Ionogels for Flexible and Transparent Conductive Electrode Materials

Buy Article:

$12.00 plus tax (Refund Policy)

Printed electronics represent an emerging area of research that promises large markets due to the ability to bypass traditional expensive and inflexible silicon-based electronics to fabricate a variety of devices on flexible substrates using high-throughput printing approaches.

One of the major targets in printed electronics is reducing the overall process temperature. In roll-2-roll manufacturing common polymer foils are used that often have a relative low glass transition temperature (Tg), usually below 150 °C. In order to produce conductive features on these polymer foils the often used approach of printing inorganic nanoparticles and subsequent sintering by heating cannot be used, since high temperatures are necessary, although selective sintering techniques like microwave or plasma exposure can be used.

We present here a simple, practical approach to prepare ionic liquid gels that show conductivity in the semi-conductive region without the necessity of heating or sintering. Furthermore, these ionogel films are flexible and show optical transparency greater than 94% from near-UV to near-IR.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2010-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more