Skip to main content

A New Method to Assess the Jetting Behavior of Drop-On-Demand Inkjet Fluids

Buy Article:

$20.00 plus tax (Refund Policy)


We present a new experimental method to assess the jetting performance of fluids for use in drop-on-demand (DoD) inkjet printheads. The oblique collision of two continuous liquid jets leads to the formation of a thin oval liquid sheet bounded by a thicker rim which disintegrates into ligaments and droplets. Under certain conditions the flow structure exhibits a remarkably symmetrical ‘fishbone’ pattern composed of a regular succession of longitudinal ligaments and droplets. For a series of model elastic fluids containing polystyrene (PS) in diethyl phthalate (DEP), ejected from nozzles with an internal diameter of 0.85 mm, the shape of the fishbone pattern varies strongly with polymer concentration. The same fluids were used in a Xaar piezoelectric DoD print head to characterize their jetting performance in terms of the maximum ligament length, a crucial parameter in determining the printability of the fluid. There are close similarities between the ligament collapse behaviors in both experiments. Good correlation was found between the maximum included angle of the fishbone pattern and the maximum ligament length in the jetting experiments, which suggests that a test based on oblique impinging jets may be useful in the development of fluids for inkjet printing.

Document Type: Research Article

Publication date: January 1, 2009

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more