Skip to main content

Surface Modification of an Organic Photoconductor in an Electrophotographic Charging Environment

Buy Article:

$12.00 plus tax (Refund Policy)

Prolonged exposure of a commercial organic photoconductor in the plasma environment corresponding to an industrial electrophotographic process caused formation of a parasitic surface layer with the properties different from the original photoconductor. The parasitic film consists of a heavily oxidized surface and oxygen-free subsurface layer with the chemical composition similar to the original photoconductor but a significantly different bonding arrangement. Formation of these two regions has been correlated with damage induced by the energetic radicals and the UV photons originating from the electrophotographic plasma discharge. In-depth understanding of the formation and the properties of this parasitic layer could provide effective means to overcome its detrimental impact on the printing cost and quality.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2009-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more