Skip to main content

Liquid Jet Instability and Dynamic Surface Tension Effect on Breakup

Buy Article:

$12.00 plus tax (Refund Policy)

We studied the instability of a liquid jet by confocal microscopy, a non-invasive three-dimensional imaging technique. The amplitude of jet oscillation can be measured from its early stage to the vicinity of the jet breakup with a radial resolution of 80 nm. A continuous jet with a diameter of 100 μm and mean velocity of 5.6 ms−1 was perturbed at a frequency of 11.8 kHz. The growth rate of the sinusoidal instability was used to determine the dynamic surface tension of water and of surfactant solutions at a surface age of ≤ 1 ms, using an established linear, axisymmetric, constant property model. A commercial aqueous non-ionic Gemini surfactant Surfynol 465 reduced the dynamic surface tension more efficiently than an anionic surfactant sodium dodecyl sulphate (SDS). The effect of surfactant on the jet breakup length has also been studied. We applied the confocal imaging system to study the temporal evolution of a ligament which starts from a concave neck and eventually develops into a satellite drop. The pinch-off process has been studied in detail. It is found that the final stages of ligament rupture are the same for water and surfactant solutions. The time taken for the satellite drop to be engulfed by the following drop depends on the surfactant concentration.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2009-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more