Skip to main content

A Model for Jet Shortening in Drop-On-Demand Ink-Jet Printing

Buy Article:

$20.00 plus tax (Refund Policy)


A new model has been developed for the surface energydriven shortening of a free, cone-shaped fluid ligament of finite length, as a function of ligament diameter, length, mass and head speed. It differs significantly from classical models based on infinitely long cylindrical (Taylor) or conical (Keller) shapes, but leads to overall shortening speeds which are very similar to those provided by Taylor's model for typical drop-on-demand fluids.

However, if a realistic initial velocity distribution along the length of the ligament is included, the model predicts more rapid shortening, by as much as 2 m/s for a jet speed of 6 m/s. Such effects should be taken into account when analyzing the behavior of real jets.

The model's predictions of shortening speeds for free dropon-demand jets fail to account for all experimental observations, which for some polymer solutions can be as much as 2-3 times as high. This effect is attributed to elastic retraction, and may be a general feature linked to the polymer relaxation time.

Document Type: Research Article

Publication date: January 1, 2009

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more