Skip to main content

Abrasion of Digital Reflection Prints

Buy Article:

$20.00 plus tax (Refund Policy)


An increasing number of color prints are now obtained from digital information with the hard copy being produced by ink jet, thermal dye transfer, and electrophotographic technologies. The permanence of these materials is of paramount concern. While there has been considerable investigation on the image stability of these materials, as it is affected by heat, humidity, light, and pollutants, there has been relatively little on their physical integrity. A physical property of primary interest is abrasion resistance. Damage to prints can occur when they are pulled from a stack or when they are accidentally subjected to rubbing action by other materials such as storage enclosures. This study was primarily concerned with the suitability of standard test methods for these materials. Abrasion resistance was evaluated using two standard abrasion tests; the Ugra Rub Test and the Sutherland® Rub Test. Experiments were made on ink jet prints on both swellable and microporous paper as well as on electrophotographic prints. The back side of one sheet of paper was rubbed against the image side of another, simulating a real-life situation. Additional abrading surfaces were a standard envelope paper, a smooth polyester sheet, and a relatively smooth abrasive cloth. Abrasion damage was determined by density change, by gloss change of a 1.0 density patch, by average grey levels, by delta E, and by the degree of smudging of colorants onto an adjacent Dmin area. These quantitative tests were compared to visual ratings. Both the Ugra and Sutherland tests produced similar abrasion actions, although the latter was more severe.

Document Type: Research Article

Publication date: 2008-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more