Skip to main content

Printed epoxy-based hydrogel chemical sensors

Buy Article:

$12.00 plus tax (Refund Policy)

Most hydrogel actuators and sensors are made via acrylate polymerizations. Because these chain reactions are inhibited by oxygen, it is difficult to print thin films or dots with good control. Epoxy curing chemistry is much less sensitive to experimental conditions. We have previously shown that hydrogels formed from reaction between water-soluble amines and epoxides can be readily printed. If the gel is filled with conducting carbon at a level close to the percolation threshold, the resistance changes as water is taken up or removed from the gel. In particular, a pH decrease results in ionization of amine groups and drives swelling of the gel. By incorporating an enzyme, such as glucose oxidase, that releases hydrogen ions when its substrate is present, a resistance change can be used to measure glucose concentrations. These gels also respond to stress with a change in resistance. By making the gel the anode or cathode of an electrolytic cell, they can also be formed as actuators that expand or contract as the pH changes locally.

Epoxy chemistry has been little explored for gels. It is very versatile and could be used to make a wide range of gel composites with one or more phases, varying water contents, varying functional groups and a range of electrical conductivity.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2007-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more