Skip to main content

Inkjet Method for Forming Openings to Buried Semiconductor Layers of Silicon Solar Cells

Buy Article:

$20.00 plus tax (Refund Policy)


An inkjet printing method for forming openings to buried semiconductor layers of silicon solar cells is described. The method uses an overlying resist as a sacrificial layer onto which a plasticiser for the resist polymer is deposited in a programmed pattern using inkjet printing. At the locations where the plasticiser is printed, the resist becomes permeable to aqueous etching solutions making it possible to form openings in underlying dielectric or silicon layer(s). The formed openings can be used to create metal contacts to the buried silicon layers of the solar cell. The increased permeability can be reversed thus enabling a single resist layer to be used to form more than one set of openings. Existing masking methods, used in solar cell fabrication, form openings in the resist layer and therefore are not well-suited to cell designs requiring more than one set of metal contacting patterns for different silicon layers.

Document Type: Research Article

Publication date: 2007-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more