Skip to main content

Inkjet Method for Forming Openings to Buried Semiconductor Layers of Silicon Solar Cells

Buy Article:

$20.00 plus tax (Refund Policy)


An inkjet printing method for forming openings to buried semiconductor layers of silicon solar cells is described. The method uses an overlying resist as a sacrificial layer onto which a plasticiser for the resist polymer is deposited in a programmed pattern using inkjet printing. At the locations where the plasticiser is printed, the resist becomes permeable to aqueous etching solutions making it possible to form openings in underlying dielectric or silicon layer(s). The formed openings can be used to create metal contacts to the buried silicon layers of the solar cell. The increased permeability can be reversed thus enabling a single resist layer to be used to form more than one set of openings. Existing masking methods, used in solar cell fabrication, form openings in the resist layer and therefore are not well-suited to cell designs requiring more than one set of metal contacting patterns for different silicon layers.

Document Type: Research Article

Publication date: January 1, 2007

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more