Skip to main content

Maskless Patterning of Low-Temperature High-Mobility ZnO

Buy Article:

$12.00 plus tax (Refund Policy)

ZnO is a material that has gained a great deal of interest in the low-temperature fabrication of high-mobility transistors. For rapid prototyping of device structures, as well as cycle time reduction for investigations of processing/geometry interactions, a maskless process with high spatial accuracy is desired. High-mobility ZnO transistors were fabricated on glass using a laser-thermal-based maskless patterning process to generate working circuits. All deposition temperatures were below 200 °C, allowing this process to be compatible with polymeric supports. A variety of circuits using 5 μm design rules and various channel width and length dimensions (w/l) were fabricated and analyzed. The circuits demonstrated included ring oscillators and logic circuits, such as an exclusive OR made from NANDs and NORs. The ring oscillator frequency was demonstrated to be about 20 kHz at 20 V. An active-matrix backplane was fabricated and used to drive an OLED device. The operating characteristics of the transistors, circuits, and processes were found to be interrelated and need to be co-optimized for the best performance.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2007-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more