Skip to main content

Using Solid Mechanics to Evaluate the Capillary and Viscous Behavior of Noncircular Tube Shapes

Buy Article:

$20.00 plus tax (Refund Policy)


The similarity between torsion-solid mechanics and incompressible-viscous tube flow is investigated by finite element solutions of the governing partial differential equations. After the numerical solutions are validated against several well-known analytical functions for noncircular shapes, a method is presented to illustrate how hydraulic resistance factors may be computed from the polar moment of inertia. Since the results are scaleable, the macroscopic solid mechanics information can be used to predict the viscous pressure loss term for micro-machined flow features. The numerical technique is then further developed to estimate the Laplace pressure jump across the main terminal meniscus in noncircular capillaries. The solid mechanics based numerical technique is demonstrated on several special cases involving horizontal and vertical capillary flow in noncircular regimes. The numerical technique compares well to published experimental results. Then a nozzle shape figure of merit is derived, and applied to a variety of noncircular shapes. Finally, the numerical methods are merged into the LXK droplet simulation model where their effectiveness is demonstrated against lab data from a wide experimental space for thermal inkjet.

Document Type: Research Article

Publication date: January 1, 2007

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more