Skip to main content

Differentiation of Bone Marrow Stem Cells on Inkjet Printed Silk Lines

Buy Article:

$12.00 plus tax (Refund Policy)

Water based silk solutions were successfully inkjet printed for the first time into patterns of parallel lines onto vinyl plastic substrates. Human bone marrow stromal cells (hMSCs) were seeded on the silk printed patterns and cultured in the presence of 100 ng/ml of bone morphogenic protein (BMP-2). After one week of culture cell growth and attachment showed site specificity on the silk printed lines. Both alkaline phosphatase activity and cell morphology indicated hBMSCs differentiation into osteogenic cells along the silk printed lines. After 4 week of culture, the cellular bridging of adjacent silk printed lines took place for all interline distances lower than 1.25 mm. Therefore, commercial inkjet printing technology can produce complex viable cellular patterns with 111 ± 24 μm lateral resolution, through the deposition of bioactive materials. The results provide a first step toward cell specific control using 3D inkjet printing techniques using biocompatible gel systems to regulate cell functions.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2006-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more