Skip to main content

Minimizing residual vibrations and cross-talk for inkjet printheads using ILC designed simplified actuation pulses

Buy Article:

$12.00 plus tax (Refund Policy)

The attainable performance of inkjet printheads is severely limited by residual vibrations and cross-talk. Both effects are inseparably linked with the actuation of an ink channel. Residual vibrations occur each time a droplet has been jetted and, while actuating a channel, fluid-mechanics in neighboring channels are excited also. These phenomena affect the performance negatively, e.g. in terms of drop-consistency and achievable jetting frequencies. Previous work has shown that Iterative Learning Control (ILC) can be applied to design input wave forms (pulses) that leave the droplet formation undisturbed while minimizing these operational issues. However, the resulting pulses are usually too complex to be implemented on the Application Specific Integrated Circuit (ASIC) of a printhead. In this paper, the ILC control framework is adjusted with a modified algorithm that allows for the design of pulses with predefined complexity. It is demonstrated that this modified ILC using only piece-wise affine command signals operates without a severe loss of performance compared to unconstrained ILC. This paper shows the modeling required for ILC, the design of the controller, and the accompanying experimental results that show the minimization of residual vibrations as well as cross-talk.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2006-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more