Skip to main content

Lower Power Supply Thermal Bubble Printhead Chip with MEMS Technology Increasing Thermal Energy Effect

Buy Article:

$20.00 plus tax (Refund Policy)


This paper describes the low power supply aimed to develop a thermal inkjet (TIJ) printhead by using bulk micromachining technology (MEMS). This experiment develops new structure designs of chip for inkjet printheads. A thermal inkjet device is designed, several of the dimensions may be adjusted just a few microns to change or optimize the drop generation performance. This energy conversion devices and systems based on Integrated Driver Head with The Performance of High-Frequency And Picoliter Drop Inkjet and structures. The TIJ process is akin to an internal combustion engine driven by an explosive phase change rather than an oxidation. In cooking, boiling is experienced as a process with an unpredictable beginning, following the lighting of the cooking flame. The boiling process is given its essential predictability in TIJ by using very great power densities to superheat the fluid far above its normal boiling temperature. Some of the waste heat can be carried away by silicon substrate. That is, the heater has excellent heat capacity. Deciding it to warm a few degrees by taking up waste heat at a location away from the heater region can significantly assist the heat management problem. For thermal inkjet printhead, the back side etching is used. The technology of microelectro-mechanical system to achieve a better thermal isolation structure and minimize conductive heat losses. Controling energy conversion is important. The fabricated back side etching thermal inkjet (TIJ) printhead is measured by open pool and close pool system. The measured begin voltage is 6.5 V, Life time is 9×10ˆ7.

Document Type: Research Article

Publication date: January 1, 2004

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more