Skip to main content

Dynamic Surface Tension of UV-Curable Inkjet Inks

Buy Article:

$12.00 plus tax (Refund Policy)

Properties like adhesion of inkjet prints on unporous media are strongly determined by wetting characteristics of ink on media. In contrast to solvent based inks for UV-curable inkjet-systems the ink is not allowed to equilibrate on surfaces because the film is cured within a very short timeframe after jetting. Therefore the static surface tension is not able to characterise the ink-media interaction before the ink curing process is initiated. In a time-scale of milliseconds the dynamic surface tension measured with the maximum pressure bubble method can be used to describe the dynamic processes of ink on unporous media. In this paper we present a study of dynamic surface tension of mono-, di-, and trifunctional acrylates in order to evaluate the effect of molecular weight, structure and the behavior of mixtures on the resulting dynamic surface tension in UV-curable inkjet inks.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2004-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more