Skip to main content

Novel Hydrazone Based Hole Transport Materials for Electrophotography

Buy Article:

$20.00 plus tax (Refund Policy)

Abstract:

Monomeric, dimeric and polymeric hydrazone based hole transporting materials (TM) with the following structures were developed and evaluated for electrophotography.

The general synthesis for all of these derivatives involves the reaction of the suitable aldehydes, having heterocyclic or aromatic chromophores (Ar), with the phenylhydrazine, followed by the reaction with epichlorohydrin. The dimeric and polymeric structures require an additional reaction step involving structures a-e (denoted as X above) to bind the hydrazone units into the dimeric structure or polymeric chain. The final products were purified several times and their structures were confirmed by H-NMR, C-NMR, and UV and IR spectra. The ionization potential (Ip) and hole mobility (using xerographic time of flight technique) were measured for all the compounds. The presence of oxiranyl or hydroxyl groups improves adhesion and compatibility not only with traditional polycarbonate (PC) binder material but also with polyvinylbutyral (PVB). Meanwhile, such dimeric or polymeric hole TM can be chemically cross-linked in the layer, for example, by reaction of the hydroxyl groups with polyisocyanates. Monomers with two oxiranyl groups can be cross-linked with polythiols. These TM properties increase the layer stability to bending, stretching and abrasion, as well as the effects of abrasion. The synthesized TM and compositions with binder exhibit good hole transporting properties and high mobility making them useful for preparation of high sensitivity electro-photographic photoconductors. They also can be used for preparation of bipolar transporting compositions and single layer photoreceptors.

Document Type: Research Article

Publication date: 2004-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more