Skip to main content

Application of Principal Components Analysis and Gaussian Mixture Models to Printer Identification

Buy Article:

$12.00 plus tax (Refund Policy)

Printer identification based on a printed document has many desirable forensic applications. In the electrophotographic process (EP) quasiperiodic banding artifacts can be used as an effective intrinsic signature. However, in text only document analysis, the absence of large midtone areas makes it difficult to capture suitable signals for banding detection. Frequency domain analysis based on the projection signals of individual characters does not provide enough resolution for proper printer identification. Advanced pattern recognition techniques and knowledge about the print mechanism can help us to device an appropriate method to detect these signatures. We can get reliable intrinsic signatures from multiple projections to build a classifier to identify the printer. Projections from individual characters can be viewed as a high dimensional data set. In order to create a highly effective pattern recognition tool, this high dimensional projection data has to be represented in a low dimensional space. The dimension reduction can be performed by some well known pattern recognition techniques. Then a classifier can be built based on the reduced dimension data set. A popular choice is the Gaussian Mixture Model where each printer can be represented by a Gaussian distribution. The distributions of all the printers help us to determine the mixing coefficient for the projection from an unknown printer. Finally, the decision making algorithm can vote for the correct printer. In this paper we will describe different classification algorithms to identify an unknown printer. We will present the experiments based on several different EP printers in our printer bank. The classification results based on different classifiers will be compared.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 January 2004

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more