Skip to main content

A Novel Pigment Dispersant and Surfactant For Radiation Curable Waterborne Ink Jet Inks

Buy Article:

$12.00 plus tax (Refund Policy)

The development of waterborne radiation curable ink formulations for ink jet applications is challenged by the need for hydrolytic stability. Most conventional waterborne inks are formulated in the basic pH range (pH ≥ 8). In this case, stable waterborne pigment dispersions are formulated with conventional anionic and nonionic pigment dispersants. However, if these same dispersions are used in combination with water-soluble acrylate monomers and oligomers, the basic pH often causes hydrolysis of the acrylic esters. The result is a decrease in pH, changes in viscosity, and poor overall stability. Conversely, if the basic pigment dispersions are added to the acid stable radiation curable monomer and oligomers, the dispersions become unstable, resulting in pigment flocculation and changes in viscosity. To address this dilemma, a novel radiation curable pigment dispersant and a co-functioning surfactant are introduced that yield acid stable pigment dispersions that remain stable when added to the water-soluble acrylate monomers and oligomers. The utilization of these additives is demonstrated in red, yellow, blue and black waterborne radiation curable ink jet formulations.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2003-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more