Skip to main content

Nonorthogonal Halftone Screens

Buy Article:

$12.00 plus tax (Refund Policy)

In color reproduction, the most troublesome moiré pattern is the second-order moiré, or the three-color moiré, usually produced by mixing of cyan, magenta and black halftone outputs. A classical 3-color zero-moiré solution is using three identical cluster halftone screens with different rotations: 15°, 45° and 75°, respectively. However, for most digital printing devices, the size and shape of halftone screens are constrained by the “digital grid”, which defines the locations of printed dots, and therefore, an exact 15° or 75° rotation of a cluster screen is impossible. Although there are many alternative approaches for moiré-free color halftoning, most of them only provide approximate solutions and/or have a tendency to generate additional artifacts associated with halftone outputs. The difficulty to achieve moiré-free color halftoning is greatly relieved by using nonorthogonal halftone screens, i.e., screens in general parallelogram shapes. As a matter of fact, there exist many practical solutions by combining three simple nonorthogonal halftone screens. In this paper, a general condition for 3-color zero-moiré solutions is derived. A procedure using integer equations to search practical solutions for different applications is also described.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 January 2002

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more