Skip to main content

Electrostatic Defect Mapping of Xerographic Photoreceptors with a Capacitive Probe

Buy Article:

$20.00 plus tax (Refund Policy)

We have recently developed a non-contact technique capable of detecting microscopic variations in the surface potential of charged dielectric films such as xerographic photoreceptors. The technique is based on measuring the charge induced on a small capacitive probe held at a constant distance from a charged sample surface. Distance control is achieved by aerodynamic floating, which is an inexpensive and simple passive feedback system capable of maintaining a constant probe-sample separation despite minor variations in sample morphology. We have used the technique to detect the presence of microscopic electrostatic defects in organic photoreceptors, such as charge deficient spots (CDSs), which are a source of image degradation in xerographic copiers and printers.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2002-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more